
CROSSTALK The Journal of Defense Software Engineering 9September 1998

Surviving in the increasingly com-
petitive software business requires
more than hiring smart, knowl-

edgeable engineers and buying the latest
development tools. You also need to use
effective software development processes
so those smart engineers can systemati-
cally apply the best technical and mana-
gerial practices to successfully complete
their projects. More organizations are
looking at software process improvement
(SPI) as a way to improve the quality,
productivity, and predictability of their
software development, acquisition, and
maintenance efforts. However, SPI ef-
forts can be derailed in many ways,
leaving the members of the organization
jaded, frustrated, and more committed
than ever to the ways of the past.

This article describes eight common
traps that can undermine an SPI pro-
gram. Learning about these process
improvement killers—and their symp-
toms and solutions—will help you pre-
vent them from bringing your initiative
to its knees. However, it is important to
realize that none of the solutions pre-
sented here is likely to be helpful if you
are dealing with unreasonable people.
That is a different class of problem.

Trap No. 1: Lack of
Management Commitment
Symptoms: Although individual groups
can improve the way they do their work
through grass-roots efforts, sustainable
changes across an organization require

management commitment at all levels.
Senior managers may claim to support
SPI (how can they say otherwise?), but
they may not be willing to make short-
term sacrifices to free-up the resources
required for the long-term investment.
Larger organizations must establish
alignment between senior management
and one or more layers of midmanagers.

If you are leading the SPI effort, you
might obtain senior management com-
mitment, but get resistance from
middle managers. In this case, you will
be forced to spend time and energy
debating the importance of SPI with
people who should only have to be
educated, not sold.

Such mixed signals from manage-
ment make it hard for team leaders and
software developers to take the effort
seriously. Watch out for lip service and
buzz words that masquerade as commit-
ments. Lower-level managers who assign
their least capable people (or no one) to
the program send a clear signal that the
lack of management commitment is
about to foil your effort.

Solutions: Managers at all levels need
to send consistent signals about SPI to
their constituencies. Executives must be
educated about the costs, benefits, and
risks so they will have a common vision
and understanding of this complex as-
pect of software engineering. Commit-
ments need to be aligned along the orga-
nizational hierarchy, so that managers
are not working at cross purposes, and a
reluctant manager cannot sabotage the
effort through inaction.

“Commitment” means more than
hearing a manager say, “I’m fully behind
this process improvement thing you’re

doing.” Look for this tangible evidence
of management commitment:
• Part of the manager’s performance

goals or salary depends on success in
SPI.

• Adequate resources are provided.
• Managers communicate clear, consis-

tent expectations, and they publicly
share the progress that is made.

• SPI leaders have adequate access to
key managers to educate them,
present issues, share status, and re-
quest assistance.

• Managers take effective actions to
break down SPI barriers you present
to them.

• A reward structure is established for
those who seriously pursue and suc-
ceed at process improvement.
Management commitment to SPI

also affects the morale and dedication of
people who work to advance the cause of
better processes in the organization.
When management objectives change
with the wind and the staff devoted to
facilitating process improvement is
downsized, those affected may be embit-
tered at having months or years of their
technical careers sidetracked for nothing.
Once burned in such a fashion, they
may be reluctant to step forward the
next time the organization is looking for
people to enable change.

Trap No. 2: Unrealistic
Management Expectations
Symptoms: Excessive enthusiasm by
ambitious managers also can pose risks
to the improvement program. If the
goals, target dates, and results expected
by managers are not realistic, the SPI
effort is ultimately set up for failure.
Managers, particularly those with little

Software Process Improvement: Eight Traps to Avoid
Karl E. Wiegers

Process Impact

Even well-planned software process improvement initiatives can be derailed by one of
the many risks that threaten such programs. This article describes eight common traps
that can undermine a software process improvement program, their symptoms, and
some possible solutions. Stay alert to the threat of these process improvement killers and
attack them before they bring your process improvement program to a screeching halt.

This article is based on an article originally pub-
lished in Software Development, May 1996. It
is reprinted (with modifications) with permission
from Software Development magazine. Capa-
bility Maturity Model and CMM are service
marks of Carnegie Mellon Institute.



10 CROSSTALK The Journal of Defense Software Engineering September 1998

software experience, may not appreciate
the effort and time involved in a large-
scale SPI effort, such as one based on
the Software Engineering Institute’s
five-level Capability Maturity Model
(CMM) [1]. These managers may be
confused about how process improve-
ment frameworks like the CMM relate
to other software engineering ap-
proaches, such as a specific object-
oriented development method. They
may focus on issues of pressing impor-
tance to them that are not realistic
outcomes of the process improvement
effort. For example, a manager may
hope to solve current staff shortages by
driving the organization to reach CMM
Level 2, which can lead to higher soft-
ware productivity. However, since it can
take two years or more to reach Level 2,
this is not an effective solution to a
near-term staffing problem.

Management needs to understand
that the behavioral changes and organi-
zational infrastructure that are parts of a
successful SPI program cannot be man-
dated or purchased. Catchy slogans like
“Level 5 by ’95” or “Six Sigma by ’96”
or “9001 by 2001” are not constructive.
In an unhealthy competitive environ-
ment, process improvement can become
a contest: Department A sets an objec-
tive to achieve CMM Level 3 by the end
of 1998, so the head of Department B
says that they can do it by mid-1998.
With rare exceptions, such behavior is
neither inspiring nor motivating.

Solutions: Educate your managers to
help them understand the realities of
what a serious process improvement
initiative will cost and what benefits they
might expect. Collect data from the
software literature on results that have
been achieved by other companies with
effective improvement programs and the
investments those companies made over
a specified period [4-6]. Every organiza-
tion is different, so it is risky to promise
an eightfold return from each dollar
invested just because you read that some
company achieved that level of success.
Use data from the literature or from
other areas of your company to help
your managers develop realistic expecta-
tions and set reasonable, even ambitious,
goals. SPI is no more of a magic silver

bullet than any other single software tool
or technology.

Trap No. 3: Time-Stingy Project
Leaders
Symptoms: When senior managers
state that they are committed to im-
proving the software processes used in
the organizations, most project leaders
will say that they are, too—whether
they mean it or not. However, success-
ful SPI initiatives require project leaders
to adjust their project schedules to
permit team members to devote some
time to improvement activities. A
project leader who claims to believe in
SPI but who treats it as a burden added
on top of the project activities is send-
ing conflicting signals.

Even if team members are permitted
to work on improvement tasks, these
tasks often get low priority, and “real
work” can easily squeeze process im-
provement activities out of a busy
engineer’s schedule. Project leaders may
respond to the pressure of delivering the
current product by curtailing the effort
that should go into upgrading the
organization’s process capability.

Solutions: You need to have consis-
tent, active commitment at all stages of
management; a bottleneck anywhere in
the organizational hierarchy can bring
the SPI program to a screeching halt.
One way to achieve consistency is
through an interlocking management
commitment process as a corporate or
organizational policy. Top managers
publicly state their goals and priorities
(including SPI), and people at the lower
management levels write their goals to
support those at the higher levels.

Senior management must make it
clear that project leaders will be evalu-
ated on the effectiveness of their process
improvement activities as well as on the
success of the software projects. Software
project planning needs to account for
the resources being devoted to design
and implement the new software pro-
cesses. The first-level manager is the
most critical factor in the success of any
process improvement effort. If this per-
son does not make SPI a visible priority,
it is not going to happen.

One way to keep a program viable is
to treat all process improvement activi-
ties as miniprojects, to give them the
visibility and legitimacy they need for
success. Write a short action plan for
each miniproject. This plan identifies
resources, states time lines, itemizes
deliverables, clarifies accountability, and
defines techniques to assess the effective-
ness of new processes implemented as a
result of each miniproject. Track the
effort devoted to SPI to see if the invest-
ment level matches your planned com-
mitment. Do not try to solve every pro-
cess problem in your group at once.
Instead, concentrate on the two or three
top-priority items, as determined
through some process assessment mecha-
nism, then tackle the next few, and so on
down the line.

Project leaders cannot just assign
their least effective people to the im-
provement efforts, either. If good people
and respected leaders are not active con-
tributors, the processes generated will
have less credibility with the rest of the
organization.

Trap No. 4: Stalling on Action
Plan Implementation
Symptoms: Action plans might be writ-
ten after a process assessment, but little
progress is made on them because man-
agement does not make them a clear
priority, assign individuals to work on
them, or otherwise take them seriously.
Managers may never mention the action
plans after they are written, so team
members get the message that achieving
improved processes by implementing the
action plans is not that important. The
lack of progress on improvement plans is
frustrating to those who want to see
progress made, and it devalues the in-
vestment of time and money made in
the process assessment.

Solutions: As with Trap No. 3, a
good way to turn action plans into ac-
tions is to treat improvement activities as
miniprojects. You need to measure
progress against the plans and to mea-
sure the impact of each action plan on
the business results achieved. For ex-
ample, a plan to improve the effective-
ness of unit testing performed by the
programmers might include an interim

Software Process Improvement



CROSSTALK The Journal of Defense Software Engineering 11September 1998

goal to acquire test automation tools and
train developers in their use. These in-
terim goals can be easily tracked. The
desired business outcome of such an
action plan should be a specific quantita-
tive reduction, over some period, in the
number of defects that slip through the
unit testing quality filter.

If your project leaders never seem to
make much progress against their action
plans, you may need to implement a
management oversight function to en-
courage them to take SPI more seriously.
In one organization I know of, all
project leaders must report the status of
their action plans every three months to
a management steering committee.
When this occurs, the project leaders do
not want to be embarrassed by reporting
little or no progress on their plans.

From one perspective, such periodic
reporting reflects appropriate manage-
ment accountability for the commit-
ments that people have made to im-
prove their software processes. From
another, this approach represents a “big
stick” strategy to enforce SPI, which is
best avoided unless progress is not be-
ing made. Your culture will determine
the most effective techniques to drive
action plans to completion. The man-
agement oversight approach did achieve
the desired effect in the aforementioned
organization.

Trap No. 5: Achieving a CMM
Level Becomes the Primary
Goal
Symptoms: Organizations that adopt
the CMM framework for process im-
provement risk viewing attainment of a
specific CMM maturity level as the
ultimate goal of the improvements,
rather than as one mechanism to help
achieve the organization’s real business
goals. SPI energy may be focused on a
race to the level N rating, when some
energy should perhaps be devoted to
other problem areas that can contribute
quickly to the quality, productivity,
people, and management issues that face
the organization.

Sometimes, a company is in such a
rush to reach the next maturity level that
the recently implemented process
changes have not yet become well estab-

lished and habitual. In such cases, the
organization might regress back to the
previous maturity level, rather than
continue to climb the maturity ladder as
it is attempting to do. Such regression is
a surefire way to demoralize practitioners
who are eager to move steadily toward a
superior software engineering culture.

Solutions: In addition to aiming at
the next maturity level, make sure your
SPI effort is aligned with corporate busi-
ness and technical objectives. Mesh the
process improvement activities with any
other improvement initiatives that are
under way, such as ISO 9001 registra-
tion, or with an established software
development framework already in use.
Recognize that advancing to the next
CMM maturity level can take one to
three years. It is not feasible to leap from
an initial ad hoc development process to
a supersophisticated engineering envi-
ronment in one fell swoop. Your goal is
not to be able to chant, “We’re Level 5!
We’re Level 5!” Your goal is to develop
improved software processes and more
capable development engineers so that
your company can prosper by offering
higher quality products to your custom-
ers more efficiently than before.

You may be compelled to achieve a
specific CMM maturity level by an
external driver, such as the need to be
able to bid for certain contracts. If you
are not so driven, though, adapt the
CMM to the shape and needs of your
organization and culture to achieve the
desired benefits. Do not just aim for the
maturity rating because it is a concise,
simply stated goal.

Use a combination of measurements
to track progress toward the business
goals as well as to measure the progress
of the SPI program. Goals can include
reducing project cycle times and product
defect levels. One way to track SPI
progress is to perform low-cost interim
assessments to check the status of your
project teams in various CMM key pro-
cess areas (such as requirements manage-
ment, software project planning, and
software configuration management).
Over time, you should observe steady
progress toward achieving both CMM
key process area goals and your
company’s software success factors.

Trap No. 6: Inadequate Training
Is Provided
Symptoms: A process improvement
initiative is at risk if the developers,
managers, and process leaders do not
have adequate skills and training. Each
person involved must understand the
general principles of SPI, the CMM, and
other pertinent SPI methods, change
leadership, software measurement, and
related areas.

Inadequate knowledge can lead to
false starts, well-intentioned but misdi-
rected efforts, and a lack of apparent
progress. Without training, the
organization’s members will not have a
common vocabulary and understanding
of how to assess the need for change or
how to interpret specialized concepts of
the improvement model being followed.
For example, “software quality assur-
ance” means different things to different
people; training is needed to achieve a
common understanding of such terms
among all participants.

Solutions: Training to support estab-
lished process improvement frameworks
can be obtained from various commer-
cial sources (such as process improve-
ment consultants or training vendors),
or you can develop such training. Differ-
ent participants in the SPI activities will
need different kinds of training. If you
are using a CMM-based approach, the
process improvement group members
should receive several days of training on
the CMM. However, four hours of
training about SPI using the CMM will
be enough for most participants. At
Eastman Kodak Co., we developed a
series of four-hour overview courses on
various software engineering practice
areas (requirements engineering and
management, peer reviews, project plan-
ning and tracking, metrics, and configu-
ration management) for project teams
engaged in SPI.

If you become serious about SPI,
consider acquiring training in other key
software improvement domains: setting
up a Software Engineering Process
Group (SEPG), establishing a metrics
program, assessing the process capability
of a project team, and action planning.
Use commercial sources of training

Software Process Improvement: Eight Traps to Avoid



12 CROSSTALK The Journal of Defense Software Engineering September 1998

wherever possible to avoid having to
create all of your own training materials.

Trap No. 7: Expecting Defined
Procedures to Make People
Interchangeable
Symptoms: Managers who have an
incomplete understanding of the CMM
may expect that having repeatable pro-
cesses available means that every project
can expect to achieve the same results
with any set of randomly assembled
team members. They may think that the
existence of a defined process in the
organization makes all software engi-
neers equally effective. They might even
believe that working on SPI means that
they can neglect technical training to
enhance the skills of their individual
software engineers.

Solutions: Individual programmers
have been shown to have a ratio of
10-to-1, 20-to-1, or even higher range
of performance (quality and productiv-
ity) on software projects [2, 3]. Process
improvements alone can never equalize
such a large range of individual capabil-
ity. You can close the gap quite a bit by
expecting people to follow effective
defined processes rather than using
whatever methods they are used to.
This will enable people at the lower end
of the capability scale to achieve consis-
tently better results than they might get
otherwise. However, never underesti-
mate the importance of attracting,
nurturing, and rewarding the best soft-
ware engineers and managers you can
find. Aim for software success by creat-
ing an environment in which all team-
mates share a commitment to quality
and are enabled—through superior
processes, appropriate tools, and effec-
tive team interactions—to reach their
peak performance.

Trap No. 8: Failing to Scale
Formal Processes to Project
Size
Symptoms: A small organization can
lose the spirit of the CMM (or any other
process model) while attempting to
apply the model to the letter, introduc-
ing excessive documentation and formal-
ity that can impede project work. This
undermines the credibility of SPI, as

teammates look for ways to bypass the
official procedures in an attempt to get
their work done efficiently. People are
reluctant to perform tasks they perceive
as adding little value to their project.

Solutions: To achieve a specific
CMM maturity level, you must demon-
strate that your organization is satisfying
all of the goals of each key process area
defined at that maturity level and at
lower levels. The processes you develop
should be no more complicated or
elaborate than they need to be to satisfy
these goals. Nothing in the CMM says
that each procedure must be lengthy or
documented in extreme detail. Strive for
a practical balance between document-
ing procedures with enough formality to
enable repeatable project successes and
having the flexibility to get project work
done with the minimum amount of low-
value overhead effort.

This nondogmatic view does not
mean that smaller organizations and
projects cannot benefit from the disci-
pline provided by the CMM. It simply
means that the procedures you adopt
should be scaled rationally to the size of
the project. A 40-hour project should
not demand eight hours of project plan-
ning just to conform to a CMM-compli-
ant “documented procedure.” Your pro-
cess improvement teams should provide
a set of scalable processes that can be
applied to the various sizes and types of
projects your group undertakes.

Conclusion
As you chart a course to improve your
software process capability, be aware of
the many minefields lurking below your
organization’s surface. Your chances of
success increase dramatically if you
watch for the symptoms that identify
these traps as a threat to your SPI
program, and when you make plans to
deal with them right away. Process
improvement is succeeding at many
companies. Make yours one of them by
controlling these risks—and others—as
well as you can. u

About the Author
Karl E. Wiegers is the principal consultant
with Process Impact in Rochester, N.Y.
Previously, he spent 18 years at Eastman

Kodak Co., including
experience as a photo-
graphic research scien-
tist, software developer,
software manager, and
software process and
quality improvement

leader. He holds a doctorate in organic
chemistry from the University of Illinois.
He is a member of the Institute of Electri-
cal and Electronics Engineers (IEEE),
IEEE Computer Society, American Soci-
ety for Quality, and the Association for
Computing Machinery. He is the author
of the award-winning book Creating a
Software Engineering Culture (Dorset
House, 1996) and has written over 110
articles on many aspects of computing,
chemistry, and military history. He is a
frequent speaker at software conferences
and professional society meetings.

Process Impact
31 Canterbury Trail
Fairport, NY 14450-8783
Voice: 716-377-5110
Fax: 716-377-5144
E-mail: kwiegers@acm.org
Internet: http://www.processimpact.com/

References
1. Carnegie Mellon University/Software

Engineering Institute, The Capability
Maturity Model: Guidelines for Improving
the Software Process, Addison-Wesley,
Reading, Mass., 1995.

2. Curtis, Bill, “The Human Element in
Software Quality,” Proceedings of the
Monterey Conference on Software Quality,
Software Productivity Research, Cam-
bridge, Mass., 1990.

3. DeMarco, Tom and Timothy Lister,
Peopleware: Productive Projects and Teams,
Dorset House Publishing, New York,
1987.

4. Diaz, Michael and Joseph Sligo, “How
Software Process Improvement Helped
Motorola,” IEEE Software, September/
October 1997.

5. Dion, Raymond, “Process Improvement
and the Corporate Balance Sheet,” IEEE
Software, July 1993.

6. Herbsleb, James, Anita Carleton, James
Rozum, Jane Siegel, and David Zubrow,
“Benefits of CMM-Based Software
Process Improvement: Initial Results,”
Technical Report CMU/SEI-94-TR-13,
Software Engineering Institute, Pitts-
burgh, 1994.

Software Process Improvement


